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This paper describes a method based on self-feedback for controlling both chaotic and nonchaotic forms of
the Heon map with and without additive Gaussian white noise. We describe a nonlinear self-tuning controller
that makes use of a feedback reference signal and a linear autoregressive formulation for the gain. This
controller is effective at stabilizing the map to a variety of fixed point or period-two orbits. We contrast our
approach with the method of Ott, Grebogi, and YofRays. Rev. Lett64, 1196(1990] which has been used
to control some chaotic processes and recently, some nonchaotic, stochast{St068-651X96)10912-0

PACS numbg(s): 05.45:+b, 07.05.Dz

[. INTRODUCTION In this paper we describe an alternative control method
and demonstrate how a reference feedback signal can be
The chaos control method pioneered by Ott, Grebogi, andised to stabilize magl) using an approach based on self-
Yorke known as OGY1] has proved effective in stabilizing tuning control. This method has been used by us to success-
unstable periodic orbits in several purportedly chaotic sysfully control a mathematical model of modulated cardiac
tems such as the rabbit septum and rat hippocampal sliqearasystolé¢6] by applying linear, self-tuning, and nonlinear
preparation[2] using small parameter perturbations. Non-feedback controls to the systef], and to control a qua-
OGY strategies for taming chaos have also been developedtatic map model of cardiac chaff3]. Here, we use a linear
as well(e.g., se¢3]). In fact, since the introduction of OGY, autoregressivéAR)-type gain in a nonlinear self-tuning con-
there has been a huge increase in the number of publishétbller to stabilize nonchaotic as well as chaotic versions of
studies which utilize non-OGY as well as OGY methods tothe Heon map with and without additive Gaussian white
tame chaos$se€[4] for an extensive bibliography of over 300 noise. One motivation for this work is that certain physi-
such referencesRecently, a study by Christini and Collins ological systems produce stochastic, nonchag@tanlineay
[5] demonstrated that the OGY method could be used tdehavior that, nevertheless can be stabilized using a chaos
identify and stabilize unstable fixed poinidFP) of a non-  control technique such as OGMés demonstrated if5]) or
chaotic, stochastic system. The model they used was tHay using the approach described herein.
second-order Heon map with additive Gaussian white noise
given by
5 IIl. METHOD
Xi+1=LOZARHBY 1+ & @ The controlled form of majfl) is
whereA andB are system parameters, afjds independent
N(O,a’é). ForB=0.3,A=1.0, and¢;=0 this nonlinear map 5
exhibits a stable period-four sequencd1.274 98, Xi+1=LO-AX+BX 1+ & 06, 2
—0.656 35, 0.951 69;-0.102 63. Fixed points of this map

may be computed analytically from the quadratic equation . . . .
y P y y q q where g; is a self-tuning control gain to be automatically

X24+0.7x—1=0, determined at each step, agg=X;— v, is the tracking er-
ror with respect to a constant amplitude reference signal
and are vef- Figure 1 is a schematic diagram of the controlled map
- (2). A traditional self-tuning controller is one in which the
X12=10.7095, —1.409%, control gain is modified by the feedback error on each itera-

, . ) . tion. The objective of the design is to find a simple and
or may be determined empirically by identifying stable and;nplementableg; to achieve the goal of automatic control,
unstable manifolds using the OGY method, for example. ;o

*Author to whom correspondence should be addressed. Present xi—>x_ as i— oo,
address: University of Texas Medical School, Department of
Psychiatry and Behavioral Sciences, 6431 Fannin Drive, Room
5.202, Houston, Texas 77030-1501. Electronic addresswherex is the desired target state which is usudlbyt not
mbrandt@ped1.med.uth.tmc.edu necessarilya UFP,x_gp, Of the original mag9], perhaps of
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I3 tions, and thus difficult to realize physically. Instead we
Vpef — e i+ zin make_us_e of the reference signgl; to achieve the goal
' < A p—>- Xj—X asl—o,
z; + + Let's assume that the control objective has been success-
i1 fully achieved. It then follows from Eq5) that
| f(4,B) o
z; [ X=a+ BX“+ yX“+ uX+ pXx
21 e 21 e or
(B+Y)X2+ (u+p—1)x+a=0. (6)

This indicates that the control target originally a UFP of
Eqg. (1), is now a stable fixed point of E¢6) whose solutions
are given by
large period. When the control objective is finally realized,
x;—x will be equal to a smallideally zer9 constant at the — (A== =V1-p—n)’—4a(B+y)
time iteration halts. We desire g, that does not depend X= 2(B+7) '
explicitly on a priori system knowledge or prediction of fu-
ture system behavior. Rather, we prefeg;athat depends Necessary conditions for the existence of two real, finite,
only on past system performance. fixed points of Eq.(6) are

A simple design for the self-tuning gain is one that uses a
linear combination of the supplied reference signal and a few
available previous system states. It satisfies the following

FIG. 1. Schematic diagram of the controlledride@ map. The
2! blocks each represent a one iteration delay unit.

)

linear AR-type relation:

n

gi=Kv et 20 QjXi—j,
i=

©)

and
(1-p—n)?—4a(B+7v)>0,

or

wheren is a small integer, independent of the system dimen-[y,.«(k—ay—a;)— 1+ B]?—4(1—kv’)(ag+a;—A)>0

sion, and thé& anda;’s are to be determined for stable track-

ing to the targek.
A mathematical justification is as follows. Wigh=0 and
gi given by Eq.(3), we rewrite Eq.(2) as

n
kUref+j§=:0 anij)(Xi_vref)-
(4)

Xi+1=1.0- AX’+Bx_1+

Notice that the controller itselfge;) is nonlinear. We con-
sider the special case=1 which will demonstrate clearly
the general idea of our approach. Equatidnreduces to

Xi+1=(1.0-KvZep) + (ag— A)XZ+asX; _ 1X;

+ (Kvret—agUrer)Xi T (B—a101e1)Xi—1

= a+ BX+ yXiXi_ 1+ uXi+ Xi_1, 5
where

a=1.0—kvr29f, B=a,—A, vy=ay,

mw=Kviet—agUrer, 7N=B—a10es-

If we wish to control the orbik; specifically to the target

Xuep Of map(1) (it is known that a stable fixed point is fairly
easy to arrive at it may prove to be very difficult to use
Xyrp itself as a term in the feedback controller. This is be-
cause a UFP is highly sensitive to noise and small perturba-

9

This also provides bounds an.; as a function ofk, a,,
a, and the two system parameters to ensure stable feedback
control. For example, if we sety=a;=0.4 andk=0.8, then
Eq. (9) reduces to the inequality .| <1.4197.

If we now insist thatx=xygp asi— then we must si-
multaneously satisfy

AXept (1—B)xypp— 1.0=0 (10)
and
(B+ ) X0ept (+ 7= 1)Xyept @=0, (11

in which xygp is an unstable solution of EGLO) but a stable
solution of Eq.(11). It is well known that for the Heon map

[Eq. (10)],

Xupp=

(B—1)+(B—1)2+4A

oA (12

Hence, to control the system trajectory to this target, we
substitute it into Eq(11) and obtain

(B—1)++/(B—1)2+4A)\?
at(B+7y) oA +(u+7n—1)
(B—1)++(B—1)?+4A
X oA =0. (13
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This indicates simply that,.; must be chosen to bg,pin  wheree,, ;=X ;— Xyrp. Let &;=¢,_; and then rewrite the
this casd substitutex gp for v,es in Eq. (13) to recover Eq.  last equation as
(10)].
To complete the analysis, we determine a sufficient con- eHl:(ao—A)einr a;g¢e;+(k+ag+ta;—2A),
dition for the control ofx; to the targekgp by choosing the —
reference signabe;=Xypp. SubStitutingv o= Xygp in Eq. X (Xyregi) + Bej, (14
(5) gives
L €117 6.
Xi+1=1.0- AX’+BX,_ 1+ (KXugp+ @oX; +a1Xi_1)

Since xgp iS a constant, this equation is “autonomous.”

X (X; = XyUEp) - D
(X = Xurp) Thus we make use of the Lyapunov fifet indirech method
Note thatX_UFP satisfies the Origina| System' ie., to determine the Stablllty of the SysteEﬁO]. FO|IOWing a
L . similar analysis of the Heon system if11], we calculate its
Xypp=1.0— AYﬁFFd— BXypp- Jacobian evaluated af=¢;=0 as
A subtraction of these last two equations gives (k+ag+a;—2A)Xup B
e 1=(ap— A’ +aseie 1+ (k+ag+a;—2A) (Xyes)) 1 0
+Be_q, whose eigenvalues are

(k+ a0+ al_ ZA)X_UFpi \/(k+ ao+ al_ 2A)2§6FP+ 4B
2 .

Ny o=

As a result, a sufficient condition for control is

(k+ag+a;—2A)Xyrp™ \(K+ag+a; — 2A) %X s+ 4B

= <
IN1d > 1,

(15

for a suitable choice of the parameters. This gives the stable range of values Qg as a function of
Finally, it should be pointed out that if we are willing to the system and gain parameters.

relax the requirement that we control xgep, then we can

make use of Eqs(8) and (9) to specify one of a range of

possible values fow,.; and thus tune the control outcome to

one of a set ok’s depending on the specific values chosen Here we use Eq(3) to attempt to control Eq(1) with

for the parameters ¢, K, ap, anda;. Note that while Egs. & =0. For the nonchaotic case éf=1 andB=0.3, then

(8) and(9) do not require knowledge of rp they do require C<0.5. From Eq(9) we have

that we know the values of the system parametarshis

caseA andB). However, we can make use of certain de- 10ref] < 4.49-8C

scriptive measures of system state to come up with reason- refl~gc(1-2C)"

able choices for the values of the four parameters. We dem-

onstrate this in Sec. II[12]. Consider the cas€=0.4 (k=0.8). Note that these values
satisfy Eqs.(15). Then |v,e|<1.4197 which encompasses
Il. RESULTS the original system state range- 0.656 35<x;<<1.274 98).
Thus stability will be assured if we select any,; in this
Here we present examples of period-one and period-tweange as well. Figure(d) is a bifurcation-style plot ok vs
control under four different cases of map), namely,(1) ., showing two regions where control is period-one, and a

nonchaotic, nonstochasti¢2) nonchaotic, stochastic(3)  region (—1.2<v,.;<0.5) where control is period-two. The
chaotic, nonstochastic, arid) chaotic, stochastic. The gain gain is

parameters are chosen to be the same for all cases using the

following strategy(for n=1): we specify thatag=a,=C, _

k=2C, andC<A/2 (C constank With these choices E@9) 9i=0.8rer+ 0.4+ 0.4 1. 17)
simplifies to

Case 1. nonchaotic, nonstochastic

Substituting Eq(17) in Eq. (6) yields
(B—1)2+4A—-8C
|vrerl < 8C(A—2C) (16) 0.2%+0.7X— (1.0~ 0.8%,)=0. (18)
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FIG. 3. Control of nonchaotic, stochastic casﬁa:(l_,B:O.S,
C 0,~0.04). (@) Period-one control forv,..;=0.7095=Xep. (b)
2.0, Period-two control fow .= —0.4.
Uref = —-0.4
i R i=1000 there is a rapid return to the original period-four
output. Figure &) shows results forv,.;=—0.4 which
yields period-two control as shown in Fig(a2 There are
Li | two observations to be noted from these resultsA variety
of period-one and period-two target trajectories can be reli-
I ably achieved in addition to control ta . (2) From Eqg.
(16) we see that the possible values gy can be safely
- N C N | chosen to be within the data range of the observed system
—2-00 L 500 L 1000 : 15(') state, that is—0.656 35<x;<<1.274 98 which is well within
; 0 |01 <1.4197.

FIG. 2. Control of nonchaotic, nonstochastic cask=(l,
B=0.3, £=0). (a Bifurcation-type plot showing period-one and
regions. (b) Period-one control
Urei=0.7095=Xep. (C) Period-two control fow, ;= —0.4. Here,
and in the remaining figure®\ are noncontrol periodsC control

period-two  control

period.

For example, fow,.;=0.7095<xep EQ. (18) simplifies to

0.%%+0.7x—0.5973=0,

which has a stable root at=0.7095 in accord with E¢(15).
Figure Zb) shows results of the controlled system Eg).

with v,.=0.7095. When the control is initiated &t 500,

stabilization occurs rapidlgwithin 27 iterations to 4 decimal

Case 2. nonchaotic, stochastic

In [5] Christini and Collins demonstrated that the OGY
method can be used to control Edj) for this particular case.
We again specifyA=1, B=0.3 and select; nonzero with
0:~0.04[13] in Eq. (2) and agair¢;=0.7095>Xyep. The
control results are as shown in Figi@B The noise at this
level does not appear to interfere with the ability to control
the system using self-tuning feedback. Figui®)3shows
results of control of Eq(5) again forv = —0.4 to a period-
two X.

Case 3. chaotic, nonstochastic

For this case, we sé&t=1.2,B=0.3, and;=0 in Eq.(1).
For the gain Eq(3) we again sedy=a;=0.4, andk=0.8 as

places to x;=0.7095. When control is turned off at in cases 1 and 2. Substituting in E§) gives
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-2.0
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FIG. 4. Control of chaotic, nonstochastic casé&=(1.2,
B=0.3, £=0). (a Bifurcation-type plot showing period-one and
period-two control regions.(b) Period-one control forv,e¢
=0.7095=X_p. (¢) Period-two control fow, ;= —0.4.

yielding |v,ef|<1.2489. Figure @) is the bifurcation-type
diagram ofx vs (—1.24<vs<1.24) for this case. If we
selectvo=0.7095 and solve 0x&+ 0.7x— 0.2=0 the result

1000

0.49+1.6(1.0-0.80%,)>0

1500

2.0 _

0 500 . 1000 1500
1

-2.0

FIG. 5. Control of chaotic, stochastic casA:(l.Z,_B=0.3,
0,:~0.035). (@ Period-one control for ¢;=0.7095<Xyrp. (D)
Period-two control fow .= —0.4.

Case 4. chaotic, stochastic

Here we use the same parameters as in case 3 with the
exception that; is nonzero andr,~0.035 (o, greater than
about 0.04 causes destabilization of the mdpgure 3a)
shows the result of control fas,.+=0.7095, and Fig. ()
shows results of control of Eq5) for v,.=—0.4 to a
period-twox. Again, the additive noise at this level does not
interfere with the ability to control the system.

IV. DISCUSSION AND CONCLUSIONS

We presented a method based on nonlinear feedback con-
trol with (linean AR-type gain for stabilizing the Hen map
in chaotic and nonchaotic modes, with and without random
noise. In[11], it was shown that a linear feedback controller
was unable to stabilize the"Hen map in all four configura-
tions studied in the present paper. Linear feedback control-
lers are generally not capable of stabilizing nonlinear sys-
tems(including chaotic ongsand are likely unable to control
chaotic plus stochastic systems.

Christini and Collins[5] demonstrated that the OGY
method could be used to control a nonchaotic, stochastic
Henon map to its unstable periodic orbits, as we also show

is a stable root ax=0.7095. Figure ) shows the control with our approach. Pyragas and Tamwsius [14] were

of this chaotic map fow,;=0.7095 which indeed leads to
the final trajectoryx=0.7095. Figure &) shows results of
control of Eq.(5) for v,e;=—0.4 to a period-two with the

final x as indicated in Fig. @).

among the first researchers to achieve success in using output
feedback mainly to control nonlinear continuous time sys-
tems, however systematic procedures for determining the
feedback gain have been problematical. There are several
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key features of our approactt) In addition to the UFP of the allowablev,.;'s, for example*1 standard deviation of
the original system, a range of fixed point and period-twothe mean of the data measured over a suitable precontrol
trajectories can be controlled using our method, which hasterval, with 0<C<0.5.

been confirmed by our many simulations. This provides a An alternative approach for selecting the gain parameters
wide latitude in choosing a desired target trajectory andyould be to apply AR(or othe) modeling to the data over
therefore represents an advantage over the OGY metBbd. some stationary precontrol interval and then use the com-
The method can be used to control any combination of chagted coefficients for the gain parameters themselves. These
otic, nonchaotic, stochastic and nonstochastic forms of theny rejated approaches will clearly require testing on arbi-
Henon map.(3) Based on our various computer S|mulat|0ns,trary nonlinear and nonlinear-stochastic systems.

itis robust with res.pect to n_oise input;) In using an easily Finally, we point out that even though feedback control
tuned refergnce signal e n the <_je3|gn of the feedpack methods in general require some knowledge or estimation of
controller (without necessarily having to use the phyS|caIIythe underlying system model, the OGY method also requires

sensitive unstable periodic orbit or fixed point value of thea learning stage to determine the locations of the saddle-type
given system we have improved both the design and imple- FPs using the method of delay-coordinate embedding.

mentation of the feedback control technique developed b ) . : :

Chen and Dong15] for similar tasks. As a possible strategy ' N€'€ IS no guarantee that such learning will require less

for selectingu o from Eq. (9) we note that if we replace samples of the process than the method descnt_)ed in this
parameteiB by the observed minimum of, (—0.656) and §tudy, or even that its success is (_ensureq for arbnrary non-

parameterA by the observed maximurfL.279, and select Ilqear systems such as those of higher dimension, or those
C=0.4, then|uv,.f<3.054 which again would encompass with nonsaddle-type UFPs. Thus the chaos control technique
the data range. This suggests that we may be able to safefiescribed here can serve as an alternative approach to the
substitute a certain subrange of the output data amplitude fé?GY method in such situations.
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