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This paper describes a method based on self-feedback for controlling both chaotic and nonchaotic forms of
the Hénon map with and without additive Gaussian white noise. We describe a nonlinear self-tuning controller
that makes use of a feedback reference signal and a linear autoregressive formulation for the gain. This
controller is effective at stabilizing the map to a variety of fixed point or period-two orbits. We contrast our
approach with the method of Ott, Grebogi, and Yorke@Phys. Rev. Lett.64, 1196~1990!# which has been used
to control some chaotic processes and recently, some nonchaotic, stochastic ones.@S1063-651X~96!10912-0#

PACS number~s!: 05.45.1b, 07.05.Dz

I. INTRODUCTION

The chaos control method pioneered by Ott, Grebogi, and
Yorke known as OGY@1# has proved effective in stabilizing
unstable periodic orbits in several purportedly chaotic sys-
tems such as the rabbit septum and rat hippocampal slice
preparation@2# using small parameter perturbations. Non-
OGY strategies for taming chaos have also been developed
as well~e.g., see@3#!. In fact, since the introduction of OGY,
there has been a huge increase in the number of published
studies which utilize non-OGY as well as OGY methods to
tame chaos~see@4# for an extensive bibliography of over 300
such references!. Recently, a study by Christini and Collins
@5# demonstrated that the OGY method could be used to
identify and stabilize unstable fixed points~UFP! of a non-
chaotic, stochastic system. The model they used was the
second-order He´non map with additive Gaussian white noise
given by

xi1151.02Axi
21Bxi211j i , ~1!

whereA andB are system parameters, andj i is independent
N(0,sj

2). ForB50.3,A51.0, andj i50 this nonlinear map
exhibits a stable period-four sequence$1.274 98,
20.656 35, 0.951 69,20.102 63%. Fixed points of this map
may be computed analytically from the quadratic equation

x̄210.7x̄2150 ,

and are

x̄1,25$0.7095, 21.4095%,

or may be determined empirically by identifying stable and
unstable manifolds using the OGY method, for example.

In this paper we describe an alternative control method
and demonstrate how a reference feedback signal can be
used to stabilize map~1! using an approach based on self-
tuning control. This method has been used by us to success-
fully control a mathematical model of modulated cardiac
parasystole@6# by applying linear, self-tuning, and nonlinear
feedback controls to the system@7#, and to control a qua-
dratic map model of cardiac chaos@8#. Here, we use a linear
autoregressive~AR!-type gain in a nonlinear self-tuning con-
troller to stabilize nonchaotic as well as chaotic versions of
the Hénon map with and without additive Gaussian white
noise. One motivation for this work is that certain physi-
ological systems produce stochastic, nonchaotic~nonlinear!
behavior that, nevertheless can be stabilized using a chaos
control technique such as OGY~as demonstrated in@5#! or
by using the approach described herein.

II. METHOD

The controlled form of map~1! is

xi1151.02Axi
21Bxi211j i1giei , ~2!

where gi is a self-tuning control gain to be automatically
determined at each step, andei5xi2v re f is the tracking er-
ror with respect to a constant amplitude reference signal
v re f . Figure 1 is a schematic diagram of the controlled map
~2!. A traditional self-tuning controller is one in which the
control gain is modified by the feedback error on each itera-
tion. The objective of the design is to find a simple and
implementablegi to achieve the goal of automatic control,
i.e.,

xi→ x̄ as i→`,

wherex̄ is the desired target state which is usually~but not
necessarily! a UFP,x̄UFP, of the original map@9#, perhaps of
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large period. When the control objective is finally realized,
xi2 x̄ will be equal to a small~ideally zero! constant at the
time iteration halts. We desire agi that does not depend
explicitly on a priori system knowledge or prediction of fu-
ture system behavior. Rather, we prefer agi that depends
only on past system performance.

A simple design for the self-tuning gain is one that uses a
linear combination of the supplied reference signal and a few
available previous system states. It satisfies the following
linear AR-type relation:

gi5kv re f1(
j50

n

ajxi2 j , ~3!

wheren is a small integer, independent of the system dimen-
sion, and thek andaj ’s are to be determined for stable track-
ing to the targetx̄.

A mathematical justification is as follows. Withj i50 and
gi given by Eq.~3!, we rewrite Eq.~2! as

xi1151.02Axi
21Bxi211S kv re f1(

j50

n

ajxi2 j D ~xi2v re f!.

~4!

Notice that the controller itself (giei) is nonlinear. We con-
sider the special casen51 which will demonstrate clearly
the general idea of our approach. Equation~4! reduces to

xi115~1.02kv re f
2 !1~a02A!xi

21a1xi21xi

1~kv re f2a0v re f!xi1~B2a1v re f!xi21

5a1bxi
21gxixi211mxi1hxi21 , ~5!

where

a51.02kv re f
2 , b5a02A, g5a1 ,

m5kv re f2a0v re f , h5B2a1v re f .

If we wish to control the orbitxi specifically to the target
x̄UFP of map~1! ~it is known that a stable fixed point is fairly
easy to arrive at!, it may prove to be very difficult to use
x̄UFP itself as a term in the feedback controller. This is be-
cause a UFP is highly sensitive to noise and small perturba-

tions, and thus difficult to realize physically. Instead we
make use of the reference signalv re f to achieve the goal
xi→ x̄ as i→`.

Let’s assume that the control objective has been success-
fully achieved. It then follows from Eq.~5! that

x̄5a1b x̄21g x̄21m x̄1h x̄

or

~b1g!x̄21~m1h21!x̄1a50 . ~6!

This indicates that the control targetx̄, originally a UFP of
Eq. ~1!, is now a stable fixed point of Eq.~6! whose solutions
are given by

x̄5
~12m2h!6A~12m2h!224a~b1g!

2~b1g!
. ~7!

Necessary conditions for the existence of two real, finite,
fixed points of Eq.~6! are

2~b1g!Þ0 or ~a01a1!ÞA, ~8!

and

~12m2h!224a~b1g!.0,

or

@v re f~k2a02a1!211B#224~12kv re f
2 !~a01a12A!.0

~9!

This also provides bounds onv re f as a function ofk, a0,
a1 and the two system parameters to ensure stable feedback
control. For example, if we seta05a150.4 andk50.8, then
Eq. ~9! reduces to the inequalityuv re fu,1.4197.

If we now insist thatx̄5 x̄UFP as i→` then we must si-
multaneously satisfy

Ax̄UFP
2 1~12B!x̄UFP21.050 ~10!

and

~b1g!x̄UFP
2 1~m1h21!x̄UFP1a50, ~11!

in which x̄UFP is an unstable solution of Eq.~10! but a stable
solution of Eq.~11!. It is well known that for the He´non map
@Eq. ~10!#,

x̄UFP5
~B21!1A~B21!214A

2A
. ~12!

Hence, to control the system trajectory to this target, we
substitute it into Eq.~11! and obtain

a1~b1g!S ~B21!1A~B21!214A

2A D 21~m1h21!

3S ~B21!1A~B21!214A

2A D 50 . ~13!

FIG. 1. Schematic diagram of the controlled He´non map. The
z21 blocks each represent a one iteration delay unit.
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This indicates simply thatv re f must be chosen to bex̄UFP in
this case@substitutex̄UFP for v re f in Eq. ~13! to recover Eq.
~10!#.

To complete the analysis, we determine a sufficient con-
dition for the control ofxi to the targetx̄UFP by choosing the
reference signalv re f5 x̄UFP. Substitutingv re f5 x̄UFP in Eq.
~5! gives

xi1151.02Axi
21Bxi211~kx̄UFP1a0xi1a1xi21!

3~xi2 x̄UFP!.

Note thatx̄UFP satisfies the original system, i.e.,

x̄UFP51.02Ax̄UFP
2 1Bx̄UFP.

A subtraction of these last two equations gives

ei115~a02A!ei
21a1eiei211~k1a01a122A!~ x̄UFPei !

1Bei21 ,

whereei115xi112 x̄UFP. Let « i5ei21 and then rewrite the
last equation as

ei115~a02A!ei
21a1ei« i1~k1a01a122A!,

3~ x̄UFPei !1B« i , ~14!

« i115ei .

Since x̄UFP is a constant, this equation is ‘‘autonomous.’’
Thus we make use of the Lyapunov first~or indirect! method
to determine the stability of the system@10#. Following a
similar analysis of the He´non system in@11#, we calculate its
Jacobian evaluated atei5« i50 as

J5F ~k1a01a122A!x̄UFP B

1 0G ,
whose eigenvalues are

l1,25
~k1a01a122A!x̄UFP6A~k1a01a122A!2x̄UFP

2 14B

2
.

As a result, a sufficient condition for control is

ul1,2u5U ~k1a01a122A!x̄UFP6A~k1a01a122A!2x̄UFP
2 14B

2
U,1 , ~15!

for a suitable choice of the parameters.
Finally, it should be pointed out that if we are willing to

relax the requirement that we control tox̄UFP, then we can
make use of Eqs.~8! and ~9! to specify one of a range of
possible values forv re f and thus tune the control outcome to
one of a set ofx̄’s depending on the specific values chosen
for the parametersv re f , k, a0 , anda1. Note that while Eqs.
~8! and~9! do not require knowledge ofx̄UFP they do require
that we know the values of the system parameters~in this
caseA andB). However, we can make use of certain de-
scriptive measures of system state to come up with reason-
able choices for the values of the four parameters. We dem-
onstrate this in Sec. III@12#.

III. RESULTS

Here we present examples of period-one and period-two
control under four different cases of map~1!, namely, ~1!
nonchaotic, nonstochastic,~2! nonchaotic, stochastic,~3!
chaotic, nonstochastic, and~4! chaotic, stochastic. The gain
parameters are chosen to be the same for all cases using the
following strategy~for n51): we specify thata05a15C,
k52C, andC,A/2 (C constant!. With these choices Eq.~9!
simplifies to

uv re fu,
~B21!214A28C

8C~A22C!
. ~16!

This gives the stable range of values forv re f as a function of
the system and gain parameters.

Case 1. nonchaotic, nonstochastic

Here we use Eq.~3! to attempt to control Eq.~1! with
j i50. For the nonchaotic case ofA51 andB50.3, then
C,0.5. From Eq.~9! we have

uv re fu,
4.4928C

8C~122C!
.

Consider the caseC50.4 (k50.8). Note that these values
satisfy Eqs.~15!. Then uv re fu,1.4197 which encompasses
the original system state range (20.656 35,xi,1.274 98).
Thus stability will be assured if we select anyv re f in this
range as well. Figure 2~a! is a bifurcation-style plot ofx̄ vs
v re f showing two regions where control is period-one, and a
region (21.2,v re f,0.5) where control is period-two. The
gain is

gi50.8v re f10.4xi10.4xi21 . ~17!

Substituting Eq.~17! in Eq. ~6! yields

0.2x̄210.7x̄2~1.020.8v re f
2 !50 . ~18!
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For example, forv re f50.7095' x̄UFP Eq. ~18! simplifies to

0.2x̄210.7x̄20.597350,

which has a stable root atx̄50.7095 in accord with Eq.~15!.
Figure 2~b! shows results of the controlled system Eq.~6!

with v re f50.7095. When the control is initiated ati5500,
stabilization occurs rapidly~within 27 iterations to 4 decimal
places! to xi50.7095. When control is turned off at

i51000 there is a rapid return to the original period-four
output. Figure 2~c! shows results forv re f520.4 which
yields period-two control as shown in Fig. 2~a!. There are
two observations to be noted from these results:~1! A variety
of period-one and period-two target trajectories can be reli-
ably achieved in addition to control tox̄UFP. ~2! From Eq.
~16! we see that the possible values forv re f can be safely
chosen to be within the data range of the observed system
state, that is20.656 35,xi,1.274 98 which is well within
uv re fu,1.4197.

Case 2. nonchaotic, stochastic

In @5# Christini and Collins demonstrated that the OGY
method can be used to control Eq.~1! for this particular case.
We again specifyA51, B50.3 and selectj i nonzero with
sj'0.04@13# in Eq. ~2! and againv re f50.7095' x̄UFP. The
control results are as shown in Fig. 3~a!. The noise at this
level does not appear to interfere with the ability to control
the system using self-tuning feedback. Figure 3~b! shows
results of control of Eq.~5! again forv re f520.4 to a period-
two x̄.

Case 3. chaotic, nonstochastic

For this case, we setA51.2,B50.3, andj i50 in Eq.~1!.
For the gain Eq.~3! we again seta05a150.4, andk50.8 as
in cases 1 and 2. Substituting in Eq.~9! gives

FIG. 2. Control of nonchaotic, nonstochastic case (A51,
B50.3, j i50). ~a! Bifurcation-type plot showing period-one and
period-two control regions. ~b! Period-one control for
v re f50.7095' x̄UFP. ~c! Period-two control forv re f520.4. Here,
and in the remaining figures,N are noncontrol periods,C control
period.

FIG. 3. Control of nonchaotic, stochastic case (A51, B50.3,
sj'0.04). ~a! Period-one control forv re f50.7095' x̄UFP. ~b!
Period-two control forv re f520.4.

6204 54BRANDT, ADEMOǦLU, LAI, AND CHEN



0.4911.6~1.020.8v re f
2 !.0

yielding uv re fu,1.2489. Figure 4~a! is the bifurcation-type
diagram of x̄ vs (21.24<v re f<1.24) for this case. If we
selectv re f50.7095 and solve 0.4x̄210.7x̄20.250 the result
is a stable root atx̄50.7095. Figure 4~b! shows the control
of this chaotic map forv re f50.7095 which indeed leads to
the final trajectoryx̄50.7095. Figure 4~c! shows results of
control of Eq.~5! for v re f520.4 to a period-twox̄ with the
final x̄ as indicated in Fig. 4~a!.

Case 4. chaotic, stochastic

Here we use the same parameters as in case 3 with the
exception thatj i is nonzero andsj'0.035 (sj greater than
about 0.04 causes destabilization of the map!. Figure 5~a!
shows the result of control forv re f50.7095, and Fig. 5~b!
shows results of control of Eq.~5! for v re f520.4 to a
period-twox̄. Again, the additive noise at this level does not
interfere with the ability to control the system.

IV. DISCUSSION AND CONCLUSIONS

We presented a method based on nonlinear feedback con-
trol with ~linear! AR-type gain for stabilizing the He´non map
in chaotic and nonchaotic modes, with and without random
noise. In@11#, it was shown that a linear feedback controller
was unable to stabilize the He´non map in all four configura-
tions studied in the present paper. Linear feedback control-
lers are generally not capable of stabilizing nonlinear sys-
tems~including chaotic ones! and are likely unable to control
chaotic plus stochastic systems.

Christini and Collins @5# demonstrated that the OGY
method could be used to control a nonchaotic, stochastic
Hénon map to its unstable periodic orbits, as we also show
with our approach. Pyragas and Tamas˘evic̆ius @14# were
among the first researchers to achieve success in using output
feedback mainly to control nonlinear continuous time sys-
tems, however systematic procedures for determining the
feedback gain have been problematical. There are several

FIG. 4. Control of chaotic, nonstochastic case (A51.2,
B50.3, j i50). ~a! Bifurcation-type plot showing period-one and
period-two control regions.~b! Period-one control forv re f
50.7095' x̄UFP. ~c! Period-two control forv re f520.4.

FIG. 5. Control of chaotic, stochastic case (A51.2, B50.3,
sj'0.035). ~a! Period-one control forv re f50.7095' x̄UFP. ~b!
Period-two control forv re f520.4.
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key features of our approach:~1! In addition to the UFP of
the original system, a range of fixed point and period-two
trajectories can be controlled using our method, which has
been confirmed by our many simulations. This provides a
wide latitude in choosing a desired target trajectory and
therefore represents an advantage over the OGY method.~2!
The method can be used to control any combination of cha-
otic, nonchaotic, stochastic and nonstochastic forms of the
Hénon map.~3! Based on our various computer simulations,
it is robust with respect to noise inputs.~4! In using an easily
tuned reference signalv re f in the design of the feedback
controller ~without necessarily having to use the physically
sensitive unstable periodic orbit or fixed point value of the
given system!, we have improved both the design and imple-
mentation of the feedback control technique developed by
Chen and Dong@15# for similar tasks. As a possible strategy
for selectingv re f from Eq. ~9! we note that if we replace
parameterB by the observed minimum ofxi (20.656) and
parameterA by the observed maximum~1.275!, and select
C50.4, thenuv re fu,3.054 which again would encompass
the data range. This suggests that we may be able to safely
substitute a certain subrange of the output data amplitude for

the allowablev re f’s, for example61 standard deviation of
the mean of the data measured over a suitable precontrol
interval, with 0,C,0.5.

An alternative approach for selecting the gain parameters
would be to apply AR~or other! modeling to the data over
some stationary precontrol interval and then use the com-
puted coefficients for the gain parameters themselves. These
and related approaches will clearly require testing on arbi-
trary nonlinear and nonlinear-stochastic systems.

Finally, we point out that even though feedback control
methods in general require some knowledge or estimation of
the underlying system model, the OGY method also requires
a learning stage to determine the locations of the saddle-type
UFPs using the method of delay-coordinate embedding.
There is no guarantee that such learning will require less
samples of the process than the method described in this
study, or even that its success is ensured for arbitrary non-
linear systems such as those of higher dimension, or those
with nonsaddle-type UFPs. Thus the chaos control technique
described here can serve as an alternative approach to the
OGY method in such situations.
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